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Limits on the effective resolution of many optical near-field experiments

are investigated. The results are applicable to variants of total internal reflec-

tion microscopy (TIRM), photon scanning optical microscopy (PSTM) and

near-field optical scanning microscopy (NSOM) in which the sample is weakly

scattering and the direction of illumination may be controlled. Analytical ex-

pressions for the variance of the estimate of the complex susceptibility of an

unknown two-dimensional object as a function of spatial frequency are ob-

tained for Gaussian and Poisson noise models and a model-independent mea-

sure is examined. The results are used to explore the transition from near-zone

to far-zone detection. It is demonstrated that the information content of the

measurements made at a distance of even one wavelength away from the sam-

ple is already not much different from the information content of the far-field.

c© 2004 Optical Society of America

OCIS codes: 110.0180, 180.5810, 290.3200, 070.6020, 110.3000.

1. Introduction

Near-field microscopy1,2 has emerged as an increasingly important imaging technol-

ogy in the last two decades. The principal advantage of near-field optical methods

is the ability to provide images with resolution on scales much smaller than the

Rayleigh-Abbe resolution limit.3 Synge4 first suggested the basic method in which

a thin sample is illuminated through a subwavelength aperture that is scanned very

close (less than a wavelength away) to the sample while the amount of transmitted
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light is recorded as a function of position. This method is now known as near-field

scanning optical microscopy (NSOM),5–8 and is often practiced by illuminating the

sample and collecting the light with a subwavelength aperture at the end of a tapered

optical fiber. Photon scanning tunneling microscopy (PSTM) is a related method in

which the sample is illuminated by an evanescent wave created by total internal re-

flection at a prism face and the subsequently scattered light is collected by a tapered

fiber as in NSOM.

Total internal reflection microscopy (TIRM) also takes advantage of sample illu-

mination by evanescent waves at a prism face. Unlike NSOM or PSTM, in TIRM the

scattered radiation is measured in the far-field. TIRM has been used primarily as a

surface inspection technique,9,10 however, recently there has been interest in taking

advantage of the high spatial frequency content of the evanescent wave11 to perform

direct imaging with transverse resolution surpassing the Rayleigh-Abbe limit.12

Quantitative interpretation of NSOM, PSTM and TIRM images is sometimes

difficult. Under certain simplifying assumptions such as homogeneity of the mate-

rial dielectric susceptibility,6 the measurements may be related to topography. Under

more general conditions, a solution of the linearized scattering problem13–16 may be

employed to relate near-field optical measurements to object structure and composi-

tion. An important question remains: What is the resolution that a given experiment

can hope to achieve?

This paper addresses the question of resolution through an analysis of the vari-

ance in the Fourier components of the estimate of the sample. The linearized inverse

scattering solution13–16 is applied to the case of a thin, weakly scattering sample and
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an analytic expression for the error covariance matrix of the estimate of the sam-

ple susceptibility is obtained for Gaussian and Poisson noise models. Furthermore,

a noise-model independent bound on the estimate error is obtained. These formulae

are then applied to PSTM for increasing distances between the sample and measure-

ment plane until the experiment is essentially TIRM. It is seen that in the near-zone

one may surpass the usual diffraction limit with the bounds being set by the signal-

to-noise ratio. It is shown that the information content in the plane that is only a

wavelength away from the sample is already quite similar to that of the far-field, i.e.,

one obtains the usual Ewald sphere of reflection.3

2. Scattering model

Consider an experiment in which a monochromatic field is incident on a dielectric

medium with susceptibility η(r). The field incident on the sample is taken to be a

plane wave. One half space, taken to be z ≥ 0, has the vacuum index of refraction

while the z < 0 half space has an index of refraction n. Only nonmagnetic materials

are considered and so it is sufficient to treat only the electric field E. The field satisfies

the equation

∇×∇×E(r) − n2(z)k2
0E(r) = 4πk2

0η(r)E(r), (1)

where k0 is the free space wave number and n(z) is the z dependent background index

of refraction as decribed above.

The sample is assumed to be of constant thickness ∆z, where ∆z is much less

than a wavelength, and to depend only on the transverse spatial coordinate ρ, where
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r = (ρ, z) so

η(r) = η(ρ) for 0 ≤ z < ∆z

0 for z ≥ ∆z .

The field is taken to consist of two parts, E = Ei + Es , where Ei is the incident

field satisfying Eq. (1) with η(r) ≡ 0. The scattered field Es arises as a result of

η(r) 6= 0. The incident field is a (possibly evanescent) plane wave

Ei(r) = ei exp [ik(qi) · r] , (2)

where qi is the tranverse wave vector of the incident wave and ei is the complex field

vector such that |ei|2 has units of energy/(time · area). The wave vector k is specified

by the transverse components q such that

k(q) = (q, kz(q)) , and (3)

kz(q) =
√

k2
0 − |q|2 . (4)

The modes for which |q| < k0 are homogeneous, or propagating, plane waves. When

|q| > k0 the plane wave is evanescent, decaying exponentially with increasing values

of z. These waves are superoscillatory in the transverse plane and thus provide a

means to probe the high spatial frequency structure of the sample. Keeping only the

first term in the Born series,3 the scattered field is given by the expression:1

Es
α(r) = k2

0

∫

d3r′ Gαβ(r, r′)ei
β exp [iqi · ρ′ + kz(qi)z

′] η(r′), (5)

where G is the 1/2-space Green’s tensor,1 and ρ
′ is equal to the transverse components

of r′.
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The measurements are made in the plane z = zd, which is illuminated by a

reference wave with polarization er

Er(r) = er exp [ik(qr) · r] . (6)

Note that in the NSOM and PSTM imaging modalities, the incident field also plays

the role of the reference field. The total field in the detector plane is given by the

superposition of the reference and scattered fields, and the resulting intensity, called

the total intensity, is:

IT(ρ, zd) = Er
α · Er?

α + Es
α · Es?

α + Es
α · Er?

α + Er
α · Es?

α , (7)

where the spatial arguments of the fields have been suppressed and the ? notation

indicates that the complex conjugate is to be taken. The first term is constant at

fixed zd. The second term is necessarily non-linear in the susceptibility. Under weak

scattering conditions, it is negligible compared to the third and fourth terms and will

be disregarded hereafter. However, if the reference field is evanescent the scattering

term becomes more important and eventually dominates as zd increases. The third

and fourth terms are conjugates that carry image information, which together will be

referred to as the holographic intensity :

I(ρ, zd) ≡ Es
α · Er?

α + Er
α · Es?

α . (8)

It should be noted that I(ρ, zd) may be positive or negative.

Determination of η is facilitated by taking the 2D (transverse) Fourier transform

of the holographic intensity I(ρ, zd), i.e.,

Ĩ(Q, zd) ≡ 1

2π

∫

d2ρ I(ρ, zd) exp[iQ · ρ] . (9)
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Substituting Eqs. (5) and (6) into (8) yields

Ĩ(Q, zd) = [H(Q, zd)η̃(Q + qi − qr) + H?(−Q, zd)η̃
?(−Q + qi − qr)] , (10)

where η̃? represents complex conjugate of the Fourier transform of η.

The expression for H(Q, zd) is:

H(Q, zd) =
ik2

0

2π
er?

β ei
α

Γαβ(qr −Q)

kz(qr − Q)
exp{i[kz(qr −Q) − k?

z(qr)]zd} . (11)

The tensor Γγδ contains the integration over z′ and is given in the appendix. It is

worthwhile to note the following properties of Eq. (10):

1. When |qr−Q| > ko or |qr| > k0, the value of H(Q, zd) decreases exponentially

with zd. Similarly, when |qr + Q| > ko or |qr| > k0, the value of H?(−Q, zd)

decreases exponentially with zd.

2. The arguments of both η̃ and η̃? are shifted by qi−qr. This allows the possibility

for some of the super-oscillatory components of η̃(Q) with |Q| > k0 to be carried

into the far field via homogenous waves.

At this point one may generalize the result of Ref. 17, where the scattered fields

in TIRM experiments are related to object structure, to include the effect of the

holographic measurement. To understand the results it is helpful first to consider a

heuristic argument. The objective is to determine the maximum value of |Q| such that

the value of η̃(Q) may be determined from measurements in the far-zone. Consider

only the first term in Eq. (10). In order to avoid exponentially decreasing H(Q, zd)

with zd, qr and Q must satisfy the conditions |Q−qr| ≤ k0 and |qr| ≤ k0. Recalling
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that for the TIRM and PSTM imaging modalities |qi| ≤ nk0 (where n is the prism

index of refraction), and setting Q − qr = k0x̂ where x̂ is the unit vector in the x

direction, it may be seen that |Q + qi − qr| is maximized when qi = nk0x̂. Thus,

Q + qi − qr = (n + 1)k0x̂. Since the x direction was chosen arbitrarily, x̂ may be

replaced by any unit vector in the transverse plane. Therefore, in principle, η̃(Q)

may be determined when |Q| ≤ (n + 1)k0. This is enough information to construct

a low-pass filtered version of the object. For comparison, the Fourier transform of

the expression given by So12 for the point spread function of a confocal microscope

leads to a bandlimit of |Q| ≤ NAk0, where NA is the numerical aperture (recall that

NA < n).

3. Statistical model

Real measurements are made on a space-limited array. For simplicity, assume that

the detection surface has an area of L × L, lies in the plane z = zd, and that it has

M × M pixels that give the total intensity at points {ρmn}. Since the H functions

are proportional to exp(−|Q|zd) when |Q| >> qr and |Q| >> qi, the intensity in the

detector plane is effectively band-limited. Therefore Shannon’s theorem applies and

the intensity in the detector plane can be represented by a discrete set of uniformly

spaced samples.18 The pixels are assumed to be small enough so that the intensity

IT(ρ, zd) in Eq. (7) is essentially constant throughout each pixel (i.e., the detector

does not introduce significant low-pass spatial filtering). It is also assumed that the

detector has enough surface area so that nearly all of the scattered light is collected.

Henceforth, M is taken to be an odd integer that is large enough so that aliasing is
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negligible. This leads to the following discretization of the spatial frequency variable

Q. The discrete spatial frequency is defined as Qmn ≡ (βm, βn), where βn is

βn =
2π

L
n , 0 ≤ n ≤ M − 1

2

=
2π

L
[n − M ] ,

M − 1

2
+ 1 ≤ n ≤ M − 1 . (12)

Note that βM−n = −βn.

In this discussion the semiclassical model for photoelectric detection is used, i.e.,

the electromagnetic field incident on the detector is treated classically, but the in-

teraction with the detector is quantized in units of photoevents.19 The intensities

IT(ρ, zd) and I(ρ, zd) are considered to be deterministic quantities. The actual num-

ber of photons counted in the mnth pixel (centered at transverse coordinate ρmn)

is represented by the random variable Nmn. The expected number of photons is

Nmn = WIT(ρmn, zd), where W = (∆a ∆t)h̄ck0, and the overbar is the expecta-

tion operator, ∆a, ∆t, and h̄ are the effective pixel area (including the quantum

efficiency), the measurement time, and Planck’s constant divided by 2π, respectively.

With this scaling, N0 ≡ WEr
α · Er?

α , which is the expected number of reference

beam counts from the first term in Eq. (7). It is convenient to define the random

variable cmn ≡ Nmn − N0, and thus cmn = WImn, where Imn is the holographic

intensity from Eq. (8).

It is clear from Eq. (10) that unambiguous determination of η̃ without the advan-

tage of prior information (other than finite support) requires at least two measure-

ments with different experimental parameters. Let those two measurements be de-

noted (c1 and c2). The estimate of η̃ is represented by η̂, which is to be determined
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by the simultaneous solution of the Eq. (10) for the two data sets with Ĩ(Qmn) on the

left hand side replaced by a measurement c̃mn/W . Due to noise, η̂ 6= η̃. Regardless of

the probability density function under consideration, Ĩmn = c̃mn/W , and Eq. (10) for

the case of the two measurements takes the form:










(c̃1)mn

(c̃1)mn











= WH1(Qmn)











η̂(Qmn + qi1 − qr1)

η̃(Qmn + qi1 − qr1)











+ WH?
1(QM−m,M−n)











η̂?(QM−m,M−n + qi1 − qr1)

η̃?(QM−m,M−n + qi1 − qr1)











(13)











(c̃2)p+m,q+n

(c̃2)p+m,q+n











= WH2(Qp+m,q+n)











η̂(Qp+m,q+n + qi2 − qr2)

η̃(Qp+m,q+n + qi2 − qr2)











+ WH?
2(Qp+M−m,q+M−n)











η̂?(Qp+M−m,q+M−n + qi2 − qr2)

η̃?(Qp+M−m,q+M−n + qi2 − qr2)











where the integers (p + M − m) and (q + M − n) are to be calculated modulo

M. The integers p and q are chosen so that the arguments of η̂ and η̂? in Eqs.

(13) are equal to within the discretization of β given in Eq. (12). Thus, (p, q) ≈

(L/2π) [qi1 − qr1 − (qi2 − qr2)]. Note that in the case of PSTM qi = qr and p = q =

0. In order simplify the notation, the equations (13) will be rewritten as follows, with

the obvious symbol replacements.











c1

c1











= WH+
1











η̂+

η̃+











+ WH−?
1











η̂?
−

η̃?
−











(14)











c2

c2











= WH+
2











η̂+

η̃+











+ WH−?
2











η̂?
−

η̃?
−
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A. Gaussian PDF

In this section the probability density function (PDF) of the inverse discrete Fourier

transform (IDFT) of the spatial distribution of photocounts measured on the detector

is determined. Consider a Gaussian noise model in which each value of Nmn is statis-

tically independent of the others and has a variance of σ2. The equations are made

more transparent by defining the zero-mean random variable bmn ≡ Nmn −WITmn =

cmn − WImn. It is convenient to represent all of the values of bmn as a single vector

b = {bmn}, which will be called the zero-mean photocount vector.

Since the photocounts in each pixel are statistically independent of each other,

the PDF of b is:

PB(b) =
1

(
√

2πσ2)M2
exp

{

−1

2σ2

M−1
∑

n=0

M−1
∑

m=0

b2
mn

}

. (15)

The vector b may be written in terms of its inverse DFT b̃:

bmn =
M−1
∑

k=0

M−1
∑

l=0

b̃kl exp

{

−i2π

[

km

M
+

ln

M

]}

(16)

Following the standard procedure for changing variables,19 Eq. (15) may be used to

compute the PDF as a function of b̃. Substituting Eq. (16) into Eq. (15) gives a

sextuple sum. Making use of the identity:

M−1
∑

m=0

exp
{

−i2π
m

M
(k + p)

}

= Mδ (k − (M − p)) , (17)

where δ represents the Krönecker δ, Eq. (15) becomes:

ln P
B̃
(b̃) =

−M2

2σ2

M−1
∑

n=0

M−1
∑

m=0

b̃mnb̃M−m,M−n + const . (18)

The PDF in Eq. (18) may be simplified. Since b is real and the nth and and (M −n)th

points are conjugate points in the M-point DFT, one it is seen that bM−m,M−n = b?
mn.
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This relation allows one to reduce the number of terms in the sum in Eq. (18) by

almost half when it is written in terms of a minimal parameter set as follows:

ln P
B̃
(b̃) =

−M2

2σ2





b̃00b̃
?
00 + 2

M−1

2
∑

m=1

(b̃0mb̃?
0m + b̃m0b̃

?
m0) + 2

M−1
∑

n=1

M−1

2
∑

m=1

b̃mnb̃?
mn





+ const .

(19)

Thus, each Fourier component included in this minimal parameter set is statistically

independent of the others. If the variance of Nmn were not constant with m and n,

the various Fourier components would be coupled in the PDF.

When there is more than one measurement of the photocount vector, presumably

each measurement is statistically independent and therefore the joint PDF for all

measurements is simply the products of the individual ones. If b1 is the photocount

vector of one measurement and b2 is that of another measurement, the joint PDF for

the two measurements is given by:

PBB(b1,b2) = PB(b1)PB(b2) and (20)

P
B̃B̃

(b̃1, b̃2) = P
B̃
(b̃1)PB̃

(b̃2) . (21)

Eqs. (14) and (19) may be used to characterize quantitatively how much infor-

mation is may be obtained as a function of spatial frequency Q (in the object space),

detection plane distance zd, incident beam transverse wave vector qi, incident field

ei, reference beam transverse wave vector qr and reference field vector er.

Since b̃mn = c̃mn − WĨmn, Eqs. (14) and Eq. (21) yield

ln Pmn(η̂−, η̂?
+, η̂?

−
, η̂+) =

−W 2M2

σ2

{

|H+
1 (η̂+ − η̃+) + H−?

1 (η̂?
−
− η̃?

−
)|2

+|H+
2 (η̂+ − η̃+) + H−?

2 (η̂?
−
− η̃?

−
)|2
}

+ const . (22)
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In Eq. (22) η̂−, η̂?
+, η̂?

−
, η̂+ are treated as independent variables. Eq. (22) is an example

of the more general normal probability distribution lnP (x) = const − (1/2)xHC−1x

where C is the covariance matrix of the random vector variable x and the superscript

H is the Hermitian conjugate operator. The inverse covariance matrix in Eq. (22) is

seen to be:

(Cov)−1 =
W 2M2

σ2































0 0 % ε

0 0 ε? ς

% ε? 0 0

ε ς 0 0































, (23)

where % = H−

1 H−?
1 + H−

2 H−?
2 , ε = H+

1 H−

1 + H+
2 H−

2 , and ς = H+
1 H+?

1 + H+
2 H+?

2 . Eq.

(23) has a symmetric block anti-diagonal structure. Its inverse is given by:

(Cov) =
σ2

M2W 2(%ς − εε?)































0 0 ς −ε

0 0 −ε? %

ς −ε? 0 0

−ε % 0 0































(24)

The variance of the estimated quantities, |η̂+ − η̃+|2 and |η̂− − η̃−|2, is given by the

(2,4) and (1,3) elements, respectively, of the covariance matrix in Eq. (24). Since

η+(Q) = η−(−Q), only one of these is non-redundant. Thus the variance of the

estimate is given by,

|η̂+ − η̃+|2 =
%σ2

W 2M2(%ς − εε?)
. (25)

In addition, the covariances of the real and imaginary parts of η̂+ and η̂− may be

determined from Eq. (24). Since the diagonal elements of the covariance matrix (24)

are zero, the covariance of the real and imaginary parts are equal, and the real and
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imaginary parts are uncorrelated. Thus the covariances of the real and imaginary

parts of η̂+ and η̂− are equal to 1/2 of the values on the right-hand side of Eq. (25).

It is interesting to note that according to Eq. (24) η̂+ and η̂− are correlated.

B. Poisson distribution case

Although determining the PDF of the estimators η̂−, η̂?
+, η̂?

−
, η̂+ [as in equqation (22)]

in an analytically tractable way for the Poisson statistics case is challenging, determin-

ing the covariance matrix of the estimators as in Eq. (25) is relatively straightforward.

Using the fact that (Nmn − Nmn)2 = Nmn for a Poisson distributed random variable

Nmn, one may show that:











c1c?
1 − c1c?

1 c1c?
2 − c1c?

2

c2c?
1 − c2c?

1 c2c?
2 − c2c?

2











=











M−4∑M−1
m=0

∑M−1
n=0 N1,mn 0

0 M−4∑M−1
m=0

∑M−1
n=0 N2,mn











. (26)

The equality associated with the (1,1) and (2,2) elements in Eq. (26) is essentially

identical to the result given by Goodman19 in his discussion of stellar speckle inter-

ferometry (the M−4 factor being due to the difference between the IDFT and the

DFT).

One may use Eq.s (14) to express the variance |η̂+ − η̃+|2 = η̂+η̂?
+− η̃+η̃?

+ in terms

of the quantities on the left hand side of Eq. (26). The result is:

η̂+η̂?
+ − η̃+η̃?

+ =
1

W 2(%ς − εε?)

×
(

|H−

2 |2
M4

M−1
∑

m=0

M−1
∑

n=0

N1,mn +
|H−

1 |2
M4

M−1
∑

m=0

M−1
∑

n=0

N2,mn

)

(27)
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In order to bring Eqs. (25) and (27) into agreement, one must have N0 = σ2, and

∑

m

∑

n N1,mn =
∑

m

∑

n N2,mn = M2N0, which will always be true when ITmn >> Imn

(i.e., the object creates a weak hologram) and will sometimes be true otherwise. Then,

Eq. (27) becomes:

η̂+η̂?
+ − η̃+η̃?

+ =
ρN0

W 2M2(%ς − εε?)
. (28)

C. Arbitrary noise case

It is instructive to consider a measure of the expected error independent of the par-

ticular noise model, so long as the noise is independently distributed (as was assumed

in both cases above). One such measure is the squared l2 norm of the system matrix

inverse implied in Eq. (14).20 That is, consider the matrix

A =











H+
1 H−?

1

H+
2 H−?

2











, (29)

and the vector

η̂ =











η̂+ − η̃+

η̂∗

−
− η̃∗

−











, (30)

related to the data through Eq. (14), η̂ = Ab̃. The error in the estimate is necessarily

bounded by the error in the data and the norm of the matrix inverse. Explicitly

‖∆η̂‖ ≤
∥

∥

∥A−1
∥

∥

∥

∥

∥

∥∆b̃
∥

∥

∥ . (31)

Consequently, the more singular A, i.e. the more poorly conditioned the system, the

larger the magnification of the error in the estimate is expected to be. It is thus useful

to consider ‖A−1‖2
as an upper bound on the normalized error in the estimate.
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4. Numerical results

A standard mathematics package (MATLAB) was used to evaluate numerically Eq.

(25) for PSTM and TIRM. In the examples shown here the variance of the esti-

mate was calculated as a function of spatial frequency at five heights zd = (0.03,

0.1, 0.3, 1.0, 10.0)λ (where λ = 2π/k0). The measurements at greatest height be-

ing effectively of the TIRM type rather than PSTM. In PSTM the reference field

is the evanescent incident field, so that qr = qi and er = ei. For the case that the

field is measured at a detector height of 10λ, it is assumed that the reference field is

still of the same polarization and transverse wave vector as the incident field. Two

independent polarizations of the incident field are considered, TE (ei ‖ k(qi) × ẑ)

and TM (ei ‖ k(qi) × k(qi) × ẑ) modes with the following parameters: n = 2.0,

qi1 = (−2.0k0, 0), and ∆z = 10−4λ. For one set of examples qi2 = (2.0k0, 0), while

for the second qi2 = (0, 2.0k0). Thus the reference beams are anti-parallel for the first

and perpendicular for the second. When qi2 = (2.0k0, 0) the experiment achieves the

maximum possible transverse resolution possible (in the x-direction).

Figures 1 and 2 show the variance of the estimate η̂(Q) as a function of spatial

frequency. These “variance images” were normalized so that the smallest variance in

any image is unity. The normalized variance images had a threshold set at 104 (i.e.

values greater than 104 were set to that value) to reduce the dynamic range required

of the display. Note that a value of 104 corresponds to an RMS error of 100 times

that of the best determined value.

It may be seen from Figure 3 that the squared norm of the matrix inverse is a good
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indicator of which regions of the data space will be practically accessible. However it

should be noted that this upper bound does give quantitatively different results from

those obtained for the variance with particular noise models, and so ‖A−1‖2
cannot

simply be taken as a substitute for the variance, nor can the noise model be ignored

entirely.

It can been seen in Figures 1, 2 and 3 that at zd = λ the variance and the norm

of the matrix inverse increase quickly above the far-field cutoff |qi − Q| < k0. The

result indicates that the so-called far zone (the region where the evanescent fields

are negligible) begins in the neighborhood of a single wavelength from the sample.

If one hopes to take practical advantage of the high spatial frequency content of the

near-field, measurements of the scattered field must be made within one wavelength

of the sample. It should be noted that the shift of the Ewald sphere (or circle in this

case) of reflection by the wave vector of the incident field remains evident even in the

far zone. This shift may be used to advantage to circumvent the usual Abbe-Rayleigh

limit when multiple incident fields of different wave vectors are used to sweep out a

region of the Fourier space of the object outside the usual limiting circle of radius

2k0.

The case of an incident wave that is less evanescent, qi = (−1.1k0, 0), was also

considered, though figures are not shown here. The results were qualitatively similar

to the above case and led to similar conclusions. That is, at zd = λ the variance of the

estimate increases quickly above the far-field cutoff [in this case |Q| < (1.1 + 1)k0].

Of course, in such a case the incident wave does not provide much more resolution

than a homogeneous wave with |Q| = k0.
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5. Conclusion

An analysis of achievable resolution for optical near-field microscopy with has been

presented. An error in the estimate of the computed dielectric susceptibility was

obtained for Gaussian and Poisson noise models and a model independent measure

of expected error was similarly obtained. The formulae presented here place limits on

the spatial resolution that a given experiment may be expected to achieve for thin

(or at least invariant along the z-axis), weakly scattering samples.

The error in the estimate of the object structure was considered for measurements

made at different heights above the sample. The region of the Fourier space of the

sample practically accessible from these measurements is seen to decrease in size as

the measurement plane is withdrawn to the far-zone. It was shown that the likely

susceptibility estimate error increases dramatically for spatial frequencies above the

far-field cutoff (|qi − Q| = k0), when the probe is even one wavelength away from

the sample, indicating that the field does not contain much more information than

is available in the far-field. The shift in the Ewald circle of reflection by the wave

vector of the incident field was seen to be manifest even in the far zone indicating

that superresolved imaging based on measurements taken in the far-zone alone is

practically possible so long as the incident field is evanescent.

Objects exhibiting complicated structure, not separable in the transverse and

longitudinal coordinates, are also of great interest. In those cases, one may employ

similar methodology and make use of the inverse scattering formalism described in

Ref. 13–16 in combination with a noise model to determine the likely errors in the
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object reconstruction. This is the subject of a forthcoming paper.
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Appendix

Expressions for the 1/2-space Green’s tensor may be found in the literature.1,16 The

tensor Γαβ in Eq. (11) is obtained by integration of the Green’s tensor over the

longitudinal coordinate of the object (z′) and is given by the expression:

Γ(q) =
1

|q|2





















q2
xhxx + q2

yhyy qxqy(hxx − hyy) |q|qxhxz

qxqy(hxx − hyy) q2
yhxx + q2

xhyy |q|qyhxz

|q|qxhzx |q|qyhzx |q|2hzz





















, (A1)

where q = (qx, qy). The h functions are the result of multitplying the g̃ functions in

Ref. 16 by exp[i(kz(qi) − kz(q))z′] and integrating from 0 to ∆z. Explicitly,

hxx =
k2

z(q)

k2
0

(θ1 + R2θ2)

hxz =
−|q|kz(q)

k2
0

(θ1 − R2θ2)

hyy = (θ1 + R1θ2)

hzx =
−|q|kz(q)

k2
0

(θ1 + R2θ2)

hzz =
|q|2
k2

0

(θ1 − R2θ2) , (A2)
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where R1(q) and R2(q) are the reflection coefficients given by

R1(q) =
kz(q) − k′

z(q)

kz(q) + k′

z(q)
, (A3)

and

R2(q) =
k′

z(q) − nkz(q)

k′

z(q) + nkz(q)
, (A4)

with k′

z(q) =
√

n2k2
0 − |q|2. The functions θ1 and θ2 are given by:

θ1(q) = i
1 − exp (i[kz(qi) − kz(q)]∆z)

kz(qi) − kz(q)

θ2(q) = i
1 − exp (i[kz(qi) + kz(q)]∆z)

kz(qi) + kz(q)
. (A5)
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Fig. 1. The base-10 logarithm of normalized PSTM susceptibility Fourier space

variance for detection heights of (0.03, 0.1, 0.3, 1.0, 10.0)λ as labeled above. The

coordinates are spatial frequency in units of k0 = 2π/λ. The data are taken

to consist of two scans with incident wave vectors of ±2k0x̂, where x̂ is a unit

vector. Results of illumination by TM modes are shown on the left and TE on

the right. The plots are normalized so that the minimum variance of any point

is 1.0. The linear color scale runs from 0 to 4 and is shown at the bottom of the

figure. Note that the range on each figure is different. Values of the normalized

variance greater than 104 were set equal to 104 for clarity in display. It can be

seen that at zd = 1.0λ the effective information content is already similar to

that of the far-field limit, in which only the homogeneous modes are detected.

Fig. 2. Same as Figure 1, except that the data are assumed to consist of two

scans with incident wave vectors of −2k0x̂ and 2k0ŷ, where ŷ is a unit vector.

Fig. 3. The logarithm of the squared l2 norm of the system matrix inverse for

the cases of measurements made in the two closer planes. The four top plots

show results for the case of counter propagating incident evanescent waves,

while the bottom four plots show results for the case of the same orthogonal

incident wave vectors discussed above. Coordinates are again spatial frequency

in units of k0. The linear color scale running from 0 to 4 is shown at the bottom

of the figure.
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